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Scientific Progress and Accomplishments
contract/grant number: W911NF-09-1-0111

ARO proposal number: 56031-EG
December 31, 2012

Richard A. Regueiro
Associate Professor

Department of Civil, Environmental, and Architectural Engineering
University of Colorado, Boulder

The outline of this section of the final report is as follows:

1. overview of micromorphic finite element (FE) results presented in various published
journal articles [Isbuga and Regueiro, 2011, Regueiro and Isbuga, 2011, Isbuga and
Regueiro, 2012] and PhD thesis [Isbuga, 2012] funded by this research grant;

2. overview of discrete element and micropolar continuum finite element coupling in one
dimension, and numerical results [Regueiro and Yan, 2013];

3. formulation of overlap coupling for grain-FE scale and micromorphic continuum FE
scale (two methods);

4. overview of adaptivity approach;

5. summary of future research

1 Overview of micromorphic finite element (FE) re-

sults

This section summarizes briefly the micromorphic finite element (FE) results presented in
various published journal articles [Isbuga and Regueiro, 2011, Regueiro and Isbuga, 2011,
Isbuga and Regueiro, 2012] and PhD thesis [Isbuga, 2012] funded by this research grant.
More details can be found in the cited articles and thesis, provided as attachments.

The papers Isbuga and Regueiro [2011], Regueiro and Isbuga [2011] focussed on the finite
strain, materially linear isotropic elastic, three-dimensional finite element implementation
and numerical results using Tahoe. We showed that the implementation is convergent with
respect to spatial discretization (i.e., mesh size), even in the presence of a boundary layer.
Upon increasing elastic length scale, the boundary layer was found to become less sharp.
For pressure-sensitive Drucker-Prager elasto-plasticity [Isbuga and Regueiro, 2012, Isbuga,
2012], it was found that choice of micromorphic elastic parameters in conjunction with plastic
strength parameters will influence the stress paths and, in turn, yielding. The boundary
conditions on the micro-displacement tensor Φh had a significant influence on the results. A
plastic length scale term has not yet been implemented, and it is anticipated that this will
influence the numerical results where there is a gradient of an internal state variable (ISV)
in a region of large deformation.
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2 Overview of discrete element and micropolar contin-

uum finite element coupling in one dimension, and

numerical results

The ultimate problem of interest is shown in Fig.1. The discrete element (DE) and/or finite
element (FE) representation of the particulate micro-structure is intentionally not shown
in order not to clutter the drawing of the micro-structure. The grains (binder matrix not
shown) of the micro-structure are ‘meshed’ using DEs and/or FEs with cohesive surface el-
ements (CSEs). The open circles denote continuum FE nodes that have prescribed degrees

of freedom (dofs) D̂ based on the underlying grain-scale response, while the solid circles
denote continuum FE nodes that have free dofs D governed by the micromorphic continuum
model. We intentionally leave an ‘open window’ (i.e., Direct Numerical Simulation (DNS)
region) on the particulate micro-structural mesh in order to model dynamic failure. If the
continuum mesh overlays the whole particulate micro-structural region, as in Klein and Zim-
merman [2006] for atomistic-continuum coupling, then the continuum FEs would eventually
become too deformed by following the micro-structural motion during fragmentation. The
blue-dashed box at the bottom-center of the illustration is a micromorphic continuum FE
region that can be converted to a DNS region for adaptive high-fidelity material modeling
as the projectile penetrates the target.

particulate micro-structural DNS region 

(DE and/or FE/CSE)

micromorphic continuum FE region

coupling region 

(micromorphic continuum FE 

to particulate micro-structural DNS)

deformable solid body (projectile)

continuum FE mesh

bound particulate material (target)

multi-scale computational model
v

Figure 1. 2D illustration of concurrent computational multi-scale modeling approach in the contact
interface region between a bound particulate material (e.g., ceramic target) and deformable solid
body (e.g., refractory metal projectile).
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In order to simplify the problem, we consider the compression and shear of the interface
of DNS region with the micromorphic continuum FE region as a 1D overlap problem between
glued, nonlinear elastic DEs, and micropolar elastic continuum FE [Regueiro and Yan, 2013].
Details may be found in Regueiro and Yan [2013]. In summary, we learned that the coupling
methodology generally works for quasi-statics between DEs and FEs, but the 1D problem
is too “discrete” to yield the results we expect, i.e., no influence of overlap coupling region.
This is because shear and rotational degrees of freedom are coupled in the DE and FE
formulations, and thus upon shearing the end of the DE string of particles, a ratcheting
rotational mode is propagated through the DE string and into the FE continuum domain
where it is smoothed out. We are working on extending this coupling method to include
inertia terms (dynamics), and also to couple grain-FE to micromorphic FE for 2D and 3D
problems.
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3 Formulation of overlap coupling for grain-FE scale

and micromorphic continuum FE scale

Two coupling approaches in Sections 3.1 and 3.2 were considered in this research. Cou-
pling Approach 1 is implemented with numerical results discussed in Section 2. Coupling
Approach 1 is based on the “bridging-scale decomposition” in Wagner and Liu [2003], Kad-
owaki and Liu [2004], Klein and Zimmerman [2006], and Coupling Approach 2 is based on
the “bridging domain method” in Xiao and Belytschko [2004]. Coupling Approach 1 couples
the DNS and micromorphic FE dofs directly through interpolation functions in the overlap
region, and partitions the energy through scaling factors within each term of the energy
(kinetic and potential energies). Coupling Approach 2 partitions the energies through a
scalar distance function ω(X) (describing the width of the overlapping domain), and uses
Lagrange multipliers to constrain the DNS displacements to the micromorphic continuum
FE displacements in the overlapping domain.

3.1 Coupling Approach 1:

It is assumed that the micromorphic continuum-FE mesh covers the domain of the problem
in which the bound particulate mechanics is not dominant, whereas in regions of significant
grain-matrix debonding or intra-granular cracking leading to a macro-crack, a grain-scale
mechanics representation is used (e.g., grain-FE, grain-DE-FE, grain peridynamics [Silling,
2000]) in Fig.2.

3.1.1 3D Kinematics

Here, a summary of the kinematics of the coupled regions is given for general 3-D kinematics,
following the illustration shown in Fig.2. It is assumed that the micromorphic continuum
finite element (FE) mesh covers the domain of the problem in which the material is not
fragmenting, whereas in regions of fracture and fragmentation, a DNS (e.g., DE/FE/CSE,
or peridynamics [Silling, 2000]) representation can be used. In Fig.2, discrete domains are
defined, where the yellow background denotes the FE overlap region B̃h with underlying
ghost DNS nodes, brown the micromorphic FE continuum region B̄h with no underlying
DNS, and white background the free DNS region B̂h∪BDNS. In summary, the finite element
domain Bh is the union of pure micromorphic continuum FE domain B̄h, overlapping FE
domain with underlying ghost DNS nodes B̃h, and overlapping FE domain with underlying
free DNS nodes B̂h, such that Bh = B̄h∪B̃h∪B̂h. The pure DNS domain with no overlapping
FE domain (i.e., the ‘open-window’) is indicated by BDNS. The goal is to have the overlap
region B̂h ∪ B̃h as close to the region of interest (e.g., penetrator skin) as to minimize the
number of DNS nodes, and, thus, computational effort. Following some of the same notation
presented in Klein and Zimmerman [2006], we define a generalized dof vector Q̆ for DNS
displacements in the system as

Q̆ = [qα, qβ, . . . , qγ]
T , α, β, . . . , γ ∈ Ă (1)

where qα is the displacement vector of DNS node α, and Ă is the set of all DNS nodes.
Likewise, the micromorphic finite element nodal displacements and micro-displacements are
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deformable

solid body

penetrator

continuum 

FE

bound

particulate

material

target

FE contact

DNS (DE/FE/CSE)

coupling

between DNS

and 

micromorphic

continuum FE

micromorphic

continuum FE

shear/compression loading

B̄h

B̃h

B̂h

BDNS

Figure 2. Two-dimensional illustration of the Coupling Approach 1 between grain-FE DNS and
micromorphic FE continuum regions.

written as

D̆ = [da,db, . . . ,dc,φd,φe, . . . ,φf ]
T (2)

a, b, . . . , c ∈ N̆ , d, e, . . . , f ∈ M̆

where da is the displacement vector of node a, φd is the micro-displacement tensor in vector
form of node d, N̆ is the set of all nodes, and M̆ is the set of micromorphic finite element
nodes with micro-displacement tensor degrees of freedom, where M̆ ⊂ N̆ . In order to satisfy
the boundary conditions for both regions, the motion of the DNS nodes in the overlap region
(referred to as “ghost DNS nodes,” cf. Fig.2) is prescribed by the micromorphic continuum
displacement and micro-displacement fields, and written as

Q̂ = [qα, qβ , . . . , qγ]
T , α, β, . . . , γ ∈ Â , Â ∈ B̃h (3)

while the unprescribed (or free) DNS nodal displacements are

Q = [qδ, qǫ, . . . , qη]
T , δ, ǫ, . . . , η ∈ A , A ∈ B̂h ∪ BDNS (4)
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where Â ∪ A = Ă and Â ∩ A = ∅. Likewise, the displacements and micro-displacement
tensor components of nodes overlaying the DNS region are prescribed by the DNS motion
and written as

D̂ = [da,db, . . . ,dc,φd,φe, . . . ,φf ]
T (5)

a, b, . . . , c ∈ N̂ , d, e, . . . , f ∈ M̂

N̂ ,M̂ ∈ B̃h ∪ B̂h

while the unprescribed (or free) nodal displacements and micro-displacements are

D = [dm,dn, . . . ,ds,φt,φu, . . . ,φv]
T (6)

m,n, . . . , s ∈ N , t, u, . . . , v ∈ M

N ,M ∈ B̃h ∪ B̄h

where N̂ ∪ N = N̆ , N̂ ∩ N = ∅, M̂ ∪ M = M̆, and M̂ ∩ M = ∅. Referring to Fig.2,
the prescribed DNS nodal dofs Q̂ can be viewed as boundary constraints on the free DNS
region, and likewise the prescribed micromorphic finite element nodal displacements and
micro-displacements D̂ can be viewed as boundary constraints on the finite element mesh
in the overlap region.

In general, the displacement vector of a DNS node α can be represented by the fi-
nite element interpolation of the micromorphic continuum macro-displacement field uh and
micro-displacement tensor field Φh evaluated at the DNS node in the reference configuration
Xh

α, such that

uh(Xh
α, t) =

∑

a∈N̆

Nu
a (X

h
α)da(t) , Φh(Xh

α, t) =
∑

b∈M̆

NΦ
b (Xα)φb(t) α ∈ Ă (7)

where Nu
a are the shape functions associated with the micromorphic continuum displacement

field uh, NΦ
b are the shape functions associated with the micromorphic continuum micro-

displacement field Φh, and h indicates the characteristic length of the micromorphic FE
mesh. Recall that Nu

a and NΦ
b have compact support and, thus, are only evaluated for DNS

nodes that lie within a micromorphic FE containing nodes a and b in its domain.
We now derive the micro-continuum displacement (u′)h of a micro-element (Fig.3) using

the interpolated macro-displacement uh and micro-displacement tensor Φh in Eq.(7). The
position of DNS node α in the current configuration is

(x′)h(Xh
α,Ξ

h
α, t) = xh(Xh

α, t) + ξh(Xh
α,Ξ

h
α, t) (8)

where Ξh
α is the reference relative position vector of DNS node α with respect to reference

continuum position Xh
α (e.g., a Gauss point) in Bh

0 , and ξh is the current relative position
vector of DNS node α with respect to the current continuum position xh in Bh. Introducing
the relations,

xh(Xh
α, t) = Xh

α + uh(Xh
α, t) (9)

ξh(Xh
α,Ξ

h
α, t) = χh(Xh

α, t) ·Ξ
h
α = (1+Φh(Xh

α, t)) ·Ξ
h
α (10)

and substituting into Eq.(8), we have the current position of DNS node α as
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P̄

C̄ ′
Ξ̄

F e, χe

F p, χp

dV̄ ′

dV̄

P (X ,Ξ)
p(x, ξ, t)

X1

X2

X3

C̄

C
c

C ′

c′

Ξ

ξ

X
xX ′

x′

F , χ

dV
dv

dV ′
dv′

B

B̄

B0

Figure 3. Multiplicative decomposition of deformation gradient F and micro-deformation tensor
χ. Geometrical points (“macro-elements”) with centroids C, C̄, and c live in their respective
configurations: P ∈ B0, P̄ ∈ B̄, and p ∈ B. Material points (“micro-elements”) with centroids
C ′, C̄ ′, and c′. Differential vectors and deformable directors are mapped accordingly: dx = F dX ,
dx = F edX̄ , dX̄ = F pdX , ξ = χΞ, ξ = χe

Ξ̄, and Ξ̄ = χp
Ξ.

(x′)h(Xh
α,Ξ

h
α, t) = Xh

α + uh(Xh
α, t) + (1+Φh(Xh

α, t)) ·Ξ
h
α (11)

If we rewrite (x′)h in terms of its reference position (X ′)h, and we introduce a micro-
continuum displacement vector (u′)h, we have

(x′)h(Xh
α,Ξ

h
α, t) = (X ′)h(Xh

α,Ξ
h
α) + (u′)h(Xh

α,Ξ
h
α, t) (12)

where (X ′)h(Xh
α,Ξ

h
α) = Xh

α +Ξh
α, then we have

(u′)h(Xh
α,Ξ

h
α, t) = (x′)h(Xh

α,Ξ
h
α, t)−Xh

α − Ξh
α (13)

Finally, we have the micro-continuum displacement vector (u′)h associated with DNS node
α, such that

qα(t) = (u′)h(Xh
α,Ξ

h
α, t) = uh(Xh

α, t) +Φh(Xh
α, t) ·Ξ

h
α (14)

Then, for all ghost DNS nodes (cf. Fig.2), the interpolations can be written as

Q̂ = N Q̂D ·D +N Q̂D̂ · D̂ (15)

where N Q̂D and N Q̂D̂ are shape function matrices containing individual nodal shape func-

tions Nu
a and NΦ

b , but for now these matrices will be kept general to increase our flexibility
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in choosing interpolation/projection functions (such as those used in meshfree methods).
Overall, the DNS nodal displacements may be written as

[
Q

Q̂

]
=

[
NQD NQD̂

N Q̂D N Q̂D̂

]
·

[
D

D̂

]
+

[
Q′

0

]
(16)

where Q′ is introduced [Klein and Zimmerman, 2006] as the error (or “fine-scale” [Wagner
and Liu, 2003]) in the interpolation of the free DNS nodal displacements Q, whose function
space is not rich enough to represent the true free DNS motion. The shape function matrices
N are, in general, not square because the number of free DNS dofs are not the same as free
and prescribed micromorphic FE dofs, and the number of ghost DNS dofs is not the same
as prescribed and free micromorphic FE dofs. A scalar measure of error e in DNS nodal
displacements is defined as [Klein and Zimmerman, 2006]

e = Q′ ·Q′ (17)

which may be minimized with respect to prescribed micromorphic continuum FE nodal dofs
D̂ to solve for D̂ in terms of free DNS dofs and micromorphic continuum FE nodal dofs as

D̂ = M−1

D̂D̂
NT

QD̂
(Q−NQDD) , M D̂D̂ = NT

QD̂
NQD̂ (18)

This is known as the “discretized L2 projection” [Klein and Zimmerman, 2006] of the free
DNS nodal dofsQ and free micromorphic FE nodal dofsD onto the prescribed micromorphic
FE nodal dofs D̂. Upon substituting Eq.(18) into Eq.(15), we may write the prescribed

DNS dofs Q̂ in terms of free DNS dofs Q and micromorphic continuum FE nodal dofs D.
In summary, these relations are written as

Q̂ = BQ̂QQ+BQ̂DD (19)

D̂ = BD̂QQ+BD̂DD (20)

where
BQ̂Q = N Q̂D̂BD̂Q (21)

B
Q̂D

= N
Q̂D

+N
Q̂D̂

B
D̂D

(22)

B
D̂Q

= M−1

D̂D̂
NT

QD̂
(23)

B
D̂D

= −M−1

D̂D̂
NT

QD̂
NQD (24)

As shown in Fig.2, for a finite element implementation of this dof coupling, we expect that
free DNS dofs Q will not fall within the support of free micromorphic continuum FE nodal
dofs D, such that it can be assumed that NQD = 0 and

Q̂ = BQ̂QQ+BQ̂DD , D̂ = BD̂QQ (25)

where

BQ̂Q = N Q̂D̂BD̂Q , BQ̂D = N Q̂D (26)

BD̂Q = M−1

D̂D̂
NT

QD̂
, BD̂D = 0 (27)

The assumption NQD 6= 0 would be valid for a meshfree projection of the DNS nodal dofs
to the micromorphic FE nodal dofs, as in Klein and Zimmerman [2006], where we could
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imagine that the domain of influence of the meshfree projection could encompass a free
DNS node; the degree of encompassment would be controlled by the chosen support size of
the meshfree kernel function. The choice of meshfree projection in Klein and Zimmerman
[2006] was not necessarily to allow Q be projected to D (and vice versa), but to remove the
computationally costly calculation of the inverse M−1

D̂D̂
in Eqs. (19) and (20).

3.1.2 3D Kinetic and Potential Energy Partitioning and Coupling

For the DNS equations, the kinetic energy is TQ, dissipation function FQ, and potential
energy UQ, such that

TQ =
1

2
Q̇MQQ̇

FQ = aQT
Q (28)

UQ(Q) =

∫ Q

0
F INT,Q(S)dS

where MQ is the mass matrix, and F INT,Q is an internal force vector for the DNS region.
The dissipation function FQ is written as a linear function of the kinetic energy TQ with
proportionality coefficient aQ, which falls within the class of damping called “Rayleigh damp-
ing” (pg.130 of Rayleigh [1945]). For the micromorphic continuum FE equations, TD is the
kinetic energy, FD the dissipation function, and UD the potential energy, such that

TD =
1

2
ḊMDḊ

FD = aDT
D (29)

UD(D) =

∫ D

0
F INT,D(S)dS

where MD is the mass and micro-inertia matrix, and F INT,D is the internal force vec-
tor. We assume the total kinetic and potential energy and dissipation of the coupled DNS-
micromorphic-continuum system may be written as the sum of the energies

T (Q̇, Ḋ) = TQ(Q̇,
˙̂
Q(Q̇, Ḋ)) + TD(Ḋ,

˙̂
D(Q̇)) (30)

U(Q,D) = UQ(Q, Q̂(Q,D)) + UD(D, D̂(Q)) (31)

F (Q̇, Ḋ) = FQ(Q̇,
˙̂
Q(Q̇, Ḋ)) + FD(Ḋ,

˙̂
D(Q̇)) (32)

where we have indicated the functional dependence of the prescribed DNS dofs and mi-
cromorphic FE dofs solely upon the free DNS dofs and micromorphic FE dofs Q and D,
respectively. Lagrange’s equations may then be stated as

d

dt

(
∂T

∂Q̇

)
−

∂T

∂Q
+

∂F

∂Q̇
+

∂U

∂Q
= FEXT,Q

d

dt

(
∂T

∂Ḋ

)
−

∂T

∂D
+

∂F

∂Ḋ
+

∂U

∂D
= F EXT,D (33)
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which lead to a coupled system of governing equations (linear and first moment of momen-
tum) for the coupled DNS-micromorphic-continuum mechanics. The derivatives are

∂T

∂Q̇
=

∂TQ

∂Q̇
+

∂TQ

∂
˙̂
Q

BQ̂Q +
∂TD

∂
˙̂
D

BD̂Q ,
∂T

∂Q
= 0 (34)

∂F

∂Q̇
=

∂FQ

∂Q̇
+

∂FD

∂Q̇
= aQ

(
∂TQ

∂Q̇
+

∂TQ

∂
˙̂
Q

BQ̂Q

)
+ aD

(
∂TD

∂
˙̂
D

BD̂Q

)
(35)

∂U

∂Q
=

∂UQ

∂Q
+

∂UQ

∂Q̂
BQ̂Q +

∂UD

∂D̂
BD̂Q (36)

∂T

∂Ḋ
=

∂TD

∂Ḋ
+

∂TD

∂
˙̂
D

BD̂D +
∂TQ

∂
˙̂
Q

BQ̂D ,
∂T

∂D
= 0 (37)

∂F

∂Ḋ
=

∂FQ

∂Ḋ
+

∂FD

∂Ḋ
= aQ

(
∂TQ

∂
˙̂
Q

B
Q̂D

)
+ aD

(
∂TD

∂Ḋ

)
(38)

∂U

∂D
=

∂UD

∂D
+

∂UD

∂D̂
BD̂D +

∂UQ

∂Q̂
BQ̂D (39)

If the potential energy U is nonlinear with regard to DNS constitutive models and micro-
morphic elasto-plasticity, then Eq.(33) may be integrated in time and linearized for solution
by the Newton-Raphson method. The benefit of this multiscale method, as pointed out by
Wagner and Liu [2003], is that time steps may be different for the DNS and micromorphic
FE solutions. A multiscale time stepping scheme will follow an approach similar to Wagner
and Liu [2003]. To complete Eq.(33) and identify an approach to energy partitioning, the
individual derivatives may be written as

∂TQ

∂Q̇
= MQQ̇ ,

∂TQ

∂
˙̂
Q

= M Q̂ ˙̂
Q (40)

∂TD

∂Ḋ
= MDḊ ,

∂TD

∂
˙̂
D

= M D̂ ˙̂
D (41)

∂F

∂Q̇
= aQ

(
MQQ̇+BT

Q̂Q
M Q̂ ˙̂

Q
)
+ aD

(
BT

D̂Q
M D̂ ˙̂

D
)

(42)

∂F

∂Ḋ
= aQ

(
BT

Q̂D
M Q̂ ˙̂

Q
)
+ aD

(
MDḊ

)
(43)

∂UQ

∂Q
= F INT,Q(Q) ,

∂UQ

∂Q̂
= F INT,Q̂(Q̂) (44)

∂UD

∂D
= F INT,D(D) ,

∂UD

∂D̂
= F INT,D̂(D̂) (45)

where superscript Q denotes free DNS dofs and Q̂ ghost DNS dofs, whereas superscript D
denotes free micromorphic FE dofs and D̂ prescribed micromorphic FE dofs. The energy
partitioning will be introduced through the definition of these terms below. First, substitute
Eqs. (40)–(45) into Eq.(33) to arrive at the coupled nonlinear equations in terms of Q and
D as
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(
MQ +BT

Q̂Q
M Q̂BQ̂Q +BT

D̂Q
M D̂BD̂Q

)
Q̈

+
(
BT

Q̂Q
M Q̂B

Q̂D
+BT

D̂Q
M D̂B

D̂D

)
D̈

+
(
aQM

Q + aQB
T

Q̂Q
M Q̂BQ̂Q + aDB

T

D̂Q
M D̂BD̂Q

)
Q̇+ aQB

T

Q̂Q
M Q̂BQ̂DḊ

+F INT,Q(Q) +BT

Q̂Q
F INT,Q̂[BQ̂QQ+BQ̂DD]

+BT

D̂Q
F INT,D̂[B

D̂Q
Q+B

D̂D
D] = FEXT,Q +BT

Q̂Q
FEXT,Q̂ (46)

(
BT

Q̂D
M Q̂BQ̂D +BT

D̂D
M D̂BD̂Q

)
Q̈

+
(
MD +BT

Q̂D
M Q̂B

Q̂D
+BT

D̂D
M D̂B

D̂D

)
D̈

+aQB
T

Q̂D
M Q̂BQ̂QQ̇+

(
aQB

T

Q̂D
M Q̂BQ̂D + aDM

D
)
Ḋ

+BT

Q̂D
F INT,Q̂[BQ̂QQ+BQ̂DD] +BT

D̂D
F INT,D̂[BD̂QQ+BD̂DD]

+F INT,D(D) = FEXT,D +BT

D̂D
FEXT,D̂ (47)

where an expression in brackets [•] denotes the functional dependence of the nonlinear inter-
nal force vector. Note the projections through the B matrices of the corresponding mass and
damping matrices, and forcing vectors. First, starting with the mass matrices for the DNS
nodes, we partition the kinetic energy (and, in turn, the dissipation functions) as follows:

M Q̂ = (1− r̂)A
α

mQ
α , α ∈ Â , xα ∈ B̃h (48)

MQ = MDNS,Q + M̂
Q

(49)

MDNS,Q =A
β

m
Q
β , β ∈ A , xβ ∈ BDNS

M̂
Q
= (1− r̂)A

β

m
Q
β , β ∈ A , xβ ∈ B̂h

where M Q̂ is the mass matrix of ghost DNS nodes in B̃h, MDNS,Q the mass matrix of free

DNS nodes in BDNS, M̂
Q
the mass matrix of free DNS nodes in B̂h, and r̂ is a weighting

factor for the kinetic energy in the overlap region B̂h ∪ B̃h. For no homogenized micromor-
phic continuum contribution to the kinetic energy in the overlap region, r̂ = 0, and for full
micromorphic continuum homogenization of the underlying DNS kinetic energy, r̂ = 1. In
our case, we will consider the range 0 ≤ r̂ ≤ 1. Given that the proposed multiscale modeling
framework is to be used in an adaptive fashion in the future, having an overlaying micromor-
phic continuum homogenization of the DNS response is attractive when DNS is converted to
micromorphic continuum representation, and vice versa (in a statistical manner∗). For the

∗statistical, in the sense of generating a DNS representation from a micromorphic continuum one, where
the underlying DNS region does not exist; converting from DNS to micromorphic continuum representation
is straightforward given the built-in homogenization that the micromorphic continuum possesses
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mass and micro-inertia matrices associated with the micromorphic continuum, we partition
the kinetic energy as follows:

M D̂ = M̃
D̂
+ M̂

D̂
(50)

M̃
D̆
=

[
M̃

ŭ
0

0 M̃
Φ̆

]

M̃
ŭ
= A

e∈B̃h

(r̂ 〈mu,e〉+ r̃emu,e)

M̃
Φ̆
= A

e∈B̃h

(
r̂
〈
mΦ,e

〉
+ r̃emΦ,e

)

M̂
D̂
= r̂

[
M̂

û
0

0 M̂
Φ̂

]
, M̂

û
= A

e∈B̂h

〈mu,e〉 , M̂
Φ̂
= A

e∈B̂h

〈
mΦ,e

〉

MD = M̃
D
+ M̄

D
(51)

M̄
D
=

[
M̄

u
0

0 M̄
Φ

]
, M̄

u
= A

e∈B̄h

mu,e , M̄
Φ
= A

e∈B̄h

mΦ,e

where M̃
D̂

is the micromorphic continuum mass and micro-inertia matrix associated with

prescribed micromorphic FE dofs in B̃h, M̃
D
the micromorphic continuum mass and micro-

inertia matrix associated with free micromorphic FE dofs in B̃h, where M̃
D̂

and M̃
D

are

extracted from the total mass and micro-inertia matrix M̃
D̆

in B̃h, with superscript (•)D̆

denoting the full mass and micro-inertia matrix associated with elements in B̃h, 〈•〉 is a
homogenization operator, r̃e is the partitioning coefficient of micromorphic continuum kinetic
energy associated with element Be ⊂ B̃h. A simple choice is a volume fraction r̃e = Be,D/Be,

where Be,D = Be−Be,Q̂; Be,D is the non-overlapping micromorphic continuum part of element
volume Be ⊂ B̃h, and Be,Q̂ is the overlapped ghost DNS volume in the element (cf. Fig.2). For
kinetic energy partitioning, a volume fraction that directly relates to mass and micro-inertia

partitioning seems an appropriate choice. M̂
D̂
is the homogenized micromorphic continuum

mass and micro-inertia matrix associated with prescribed micromorphic FE dofs in B̂h; where
if r̂ = 0, there is no micromorphic continuum homogenization in B̂h (i.e., all kinetic energy is

due to underlying DNS). M̄
D
is the micromorphic continuum mass and micro-inertia matrix

associated with free micromorphic FE nodal dofs in the pure micromorphic continuum FE
domain B̄h.

For the potential energy (internal force) and external force partitioning in the DNS
system, we write
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F INT,Q̂ = (1− q̂)A
ǫ

f INT,Q
ǫ , xǫ ∈ B̃h (52)

F INT,Q = F INT,DNS,Q + F̂
INT,Q

(53)

F INT,DNS,Q =A
δ

f
INT,Q
δ , xδ ∈ BDNS

F̂
INT,Q

= (1− q̂)A
δ

f
INT,Q
δ , xδ ∈ B̂h

F EXT,Q̂ = (1− q̂)A
ǫ

fEXT,Q
ǫ , xǫ ∈ B̃h (54)

F EXT,Q = FEXT,DNS,Q + F̂
EXT,Q

(55)

FEXT,DNS,Q =A
δ

f
EXT,Q
δ , xδ ∈ BDNS

F̂
EXT,Q

= (1− q̂)A
δ

f
EXT,Q
δ , xδ ∈ B̂h

where F INT,Q̂ is the internal force vector associated with ghost DNS nodes in B̃h , F INT,DNS,Q

is the internal force vector associated with free DNS nodes in BDNS, F̂
INT,Q

is the internal

force vector associated with free DNS nodes in B̂h, F EXT,Q̂ is the external force vector asso-
ciated with ghost DNS nodes in B̃h , FEXT,DNS,Q is the external force vector associated with

free DNS nodes in BDNS, F̂
EXT,Q

is the external force vector associated with free DNS nodes
in B̂h, and q̂ is a weighting factor for the potential energy in the overlap region B̂h ∪ B̃h. For
no homogenized micromorphic continuum contribution to the potential energy in the overlap
region, q̂ = 0, and for full micromorphic continuum homogenization of the underlying DNS
potential energy, q̂ = 1. In our case, we will consider the range 0 ≤ q̂ ≤ 1. Note that in Klein
and Zimmerman [2006], they chose q̂ = 0. Their Cauchy-Born elastic constitutive model acts
like a homogenization operator on the underlying atomistic response, but instead of keeping
an overlain Cauchy-Born representation, the potential energy is completely represented by
the underlying atomistic response, except in the overlap region B̃h where partitioning occurs.
Note that xǫ and xδ denote positions of DNS nodes for calculating internal force vectors in
Eqs. (52)–(56), whereas xα and xβ in Eqs. (48) and (49) denote DNS nodes for calculating
DNS mass matrices.

For the potential energy (internal force) partitioning in the micromorphic continuum, we
write

F INT,D = F̃
INT,D

+ F̄
INT,D

(56)

F̄
INT,D

=

[
F̄

INT,u

F̄
INT,Φ

]

F̄
INT,u

= A
e∈B̄h

f INT,u,e , F̄
INT,Φ

= A
e∈B̄h

f INT,Φ,e

and
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F INT,D̂ = F̃
INT,D̂

+ F̂
INT,D̂

(57)

F̃
INT,D̆

=

[
F̃

INT,ŭ

F̃
INT,Φ̆

]

F̃
INT,ŭ

= A
e∈B̃h

(
q̂
〈
f INT,u,e

〉
+ q̃ef INT,u,e

)

〈
f INT,u,e

〉
=

∫

Be

(Bu,e)T · 〈σ〉 dv

F̃
INT,Φ̆

= A
e∈B̃h

(
q̂
〈
f INT,Φ,e

〉
+ q̃ef INT,Φ,e

)

F̂
INT,D̂

= q̂

[
F̂

INT,û

F̂
INT,Φ̂

]

F̂
INT,û

= A
e∈B̂h

〈
f INT,u,e

〉
, F̂

INT,Φ̂
= A

e∈B̂h

〈
f INT,Φ,e

〉

where F̃
INT,D

is the internal force vector associated with free micromorphic FE dofs in B̃h,

F̃
INT,D̂

the internal force vector associated with prescribed micromorphic FE dofs in B̃h,

where F̃
INT,D

and F̃
INT,D̂

are extracted from the full internal force vector F̃
INT,D̆

, with
superscript (•)D̆ denoting the full internal force vector associated with elements in B̃h, q̃e

is the partitioning coefficient of micromorphic continuum potential energy associated with
element Be ⊂ B̃h, and 〈•〉 is a homogenization operator (to be defined later). A simple choice
is a volume fraction q̃e = r̃e. Klein and Zimmerman [2006] considered a more sophisticated
approach using an atomic bond density function solved to reproduce a minimum potential
energy state for homogeneous deformation. The analogy here for DNS nodes would be a DNS
potential energy term (internal force vectors). This will be considered further in future work.
For now, we consider a volume fraction partitioning through q̃e, and a simple scaling through

coefficients q̄. F̂
INT,D̂

is the homogenized internal force vector associated with prescribed
micromorphic FE dofs in B̂h, which has no contribution if q̂ = 0, i.e., underlying DNS internal
forces provide full contribution in B̂h. F̄

INT,D
is the internal force vector associated with

free micromorphic FE dofs in the pure micromorphic continuum domain B̄h. The external
force vector is written as

F EXT,D = F̃
EXT,D

+ F̄
EXT,D

(58)

F̄
EXT,D

=

[
F̄

EXT,u

F̄
EXT,Φ

]

F̄
EXT,u

= F t + F u
g + A

e∈B̄h

f
EXT,u,e
b

F̄
EXT,Φ

= F r + F Φ
g + A

e∈B̄h

f
EXT,Φ,e
ℓ
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and
FEXT,D̂ = F̃

EXT,D̂
+ F̂

EXT,D̂
(59)

F̃
EXT,D̆

=

[
F̃

EXT,ŭ

F̃
EXT,Φ̆

]

F̃
EXT,ŭ

= A
e∈B̃h

(
q̂
〈
f

EXT,u,e
b

〉
+ q̃efEXT,u,e

b

)

F̃
EXT,Φ̆

= A
e∈B̃h

(
q̂
〈
f

EXT,Φ,e
ℓ

〉
+ q̃efEXT,Φ,e

ℓ

)

F̂
EXT,D̂

= q̂

[
F̂

EXT,û

F̂
EXT,Φ̂

]

F̂
EXT,û

= A
e∈B̂h

〈
f

EXT,u,e
b

〉
, F̂

EXT,Φ̂
= A

e∈B̂h

〈
f

EXT,Φ,e
ℓ

〉

where F̃
EXT,D

is the external body force and couple vector associated with free micromorphic

FE nodal dofs in B̃h, F̃
EXT,D̂

the external body force and couple vector associated with

prescribed micromorphic FE dofs in B̃h, where F̃
EXT,D

and F̃
EXT,D̂

are extracted from

F̃
EXT,D̆

, the total external body force and couple vector calculated in B̃h. F̂
EXT,D̂

is the
homogenized external body force and couple vector associated with prescribed micromorphic
FE dofs in B̂h, which has no contribution if q̂ = 0, i.e., underlying DNS body forces provide
full contribution in B̂h. F̄

EXT,D
is the external force and couple vector associated with free

micromorphic FE dofs in the pure micromorphic continuum FE domain B̄h.

3.2 Coupling approach 2:

In this coupling approach, it is also assumed that the micromorphic continuum-FE mesh
covers the domain of the problem in which the bound particulate mechanics is not dominant,
whereas in regions of significant grain-matrix debonding or intra-granular cracking leading
to a macro-crack, a grain-scale mechanics representation is used in Fig.4.

In Fig.4, discrete domains are defined, where the yellow background denotes the DNS-
FE overlap region BDNS−FE, with DNS region denoted by BDNS terminating at ∂BDNS , and
micromorphic continuum FE region denoted by BFE terminating at ∂BFE .

3.2.1 3D Kinematics

The notation here for Coupling Approach 2 is similar to that used for Coupling Approach
1. We define a generalized dof vector Q for all DNS nodal displacements in the system as

Q = [qα, qβ, . . . , qγ]
T , α, β, . . . , γ ∈ A (60)

where qα is the displacement vector of DNS node α, and A is the set of all DNS nodes.
Likewise, the micromorphic finite element nodal displacements and micro-displacements are
written as
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bound

particulate

material

target

DNS (DE/FE/CSE)

coupling

between DNS

and 

micromorphic

continuum FE

micromorphic

continuum FE

shear/compression loading

BFE

BDNS−FE

∂BDNS

∂BFE
BDNS

Figure 4. Two-dimensional illustration of Coupling Approach 2 between grain-FE DNS and
micromorphic FE continuum regions.

D = [da,db, . . . ,dc,φd,φe, . . . ,φf ]
T (61)

a, b, . . . , c ∈ N , d, e, . . . , f ∈ M

where da is the displacement vector of node a, φd is the micro-displacement tensor in vector
form of node d, N is the set of all nodes, and M is the set of micromorphic finite element
nodes with micro-displacement tensor degrees of freedom, where M ⊂ N .

3.2.2 3D Kinetic and Potential Energy Partitioning and Coupling

For the DNS equations, the kinetic energy is TQ, dissipation function FQ, and potential
energy UQ, such that

TQ =
1

2
Q̇MQQ̇

FQ = aQT
Q (62)

UQ(Q) =

∫ Q

0
F INT,Q(S)dS

where MQ is the mass matrix, and F INT,Q is an internal force vector for the DNS region.
For the micromorphic continuum FE equations, TD is the kinetic energy, FD the dissipation
function, and UD the potential energy, such that
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TD =
1

2
ḊMDḊ

FD = aDT
D (63)

UD(D) =

∫ D

0
F INT,D(S)dS

where MD is the mass and micro-inertia matrix, and F INT,D is the internal force vec-
tor. We assume the total kinetic and potential energy and dissipation of the coupled
DNS-micromorphic-continuum system may be written as the sum of the energies using the
scalar distance function ω(X) = ℓ(X)/ℓ0, where ℓ(X) is the orthogonal distance of point
X ∈ BDNS−FE from ∂BFE , and ℓ0 is the orthogonal length of BDNS−FE, such that

T (Q̇, Ḋ) = (1− ω)TQ(Q̇) + ωTD(Ḋ) (64)

U(Q,D) = (1− ω)UQ(Q) + ωUD(D) (65)

F (Q̇, Ḋ) = (1− ω)FQ(Q̇) + ωFD(Ḋ) (66)

Furthermore, the potential energy U of the coupled system is modified to include a constraint
using a Lagrange multiplier, such that the Augmented-Lagrange multiplier constrained po-
tential energy UAugLag is written as

UAugLag = U + λ · g +
1

2
kg · g (67)

where λ is the vector of Lagrange multipliers (forces acting on DNS nodes in the overlap
region), g is the vector of constraints applied at each DNS node α within the overlap region,
and k is a penalty parameter. The constraint at DNS node α in the overlap region is written
as

gα = (u′
α)

h(t)− qα(t) = 0 (68)

where (u′
α)

h(t) is the micro-continuum displacement at node α shown in Eq.(14). Lagrange’s
equations may then be stated as

d

dt

(
∂T

∂Q̇

)
−

∂T

∂Q
+

∂F

∂Q̇
+

∂UAugLag

∂Q
= F EXT,Q

d

dt

(
∂T

∂Ḋ

)
−

∂T

∂D
+

∂F

∂Ḋ
+

∂UAugLag

∂D
= FEXT,D (69)

which lead to a coupled system of governing equations (linear and first moment of momen-
tum) for the coupled DNS-micromorphic-continuum mechanics. After taking the derivatives,
and assuming mass and micro-inertia lumped matrices (for explicit dynamics), we arrive at
the coupled system of equations to solve at DNS node α

A
α

{
(1− ω(Xα))

[
mQ

α q̈α + aQm
Q
α q̇α + f INT,Q

α (Q)
]
− λα − kgα = fEXT,Q

α

}
(70)

where mQ
α is the lumped mass at DNS node α, f INT,Q

α is the internal force vector at DNS
node α, fEXT,Q

α is the external force vector at DNS node α. For micromorphic FE node a,
we have
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A
a

{
ω(Xa)

[
mD

a d̈a + aDm
D
a ḋa + f INT,D

a (D)
]
+A

α

[Nu
a (Xα) (λα + kgα)] = fEXT,D

a

}

(71)
where mD

a is the lumped mass at micromorphic FE node a, f INT,D
a is the internal force vector

at micromorphic FE node a, fEXT,D
a is the external force vector at micromorphic FE node

a. For micromorphic FE node d, we have

A
d

{
ω(Xd)

[
iDd φ̈d + aDi

D
d φ̇d + f

INT,D
d (D)

]
+A

α

[
NΦ

d (Xα) (λα + kgα)⊗Ξh
α

]
= f

EXT,D
d

}

(72)
where iDd is the lumped micro-inertia at micromorphic FE node d.

An explicit time integration procedure and solution method is described in Xiao and
Belytschko [2004], which can also be generalized for implicit time integration and a Newton-
Raphson nonlinear solution procedure.
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4 Overview of adaptivity approach

Numerical adaptivity is introduced to track, at the grain-scale, regions of dynamic material
failure. An adaptive scheme can be considered in two ways to calculate conversion criteria:
(a) using a calculated shear/compaction strain energy density averaged over a RVE of DNS
micro-structure, and calculated at a Gauss point in a micromorphic FE; and (b) a posteriori

model error estimators (e.g., Oden et al. [2006]). In terms of method development for
conversion, we consider the cases illustrated in Fig.5 where a continuum micromorphic FE
mesh region is converted to a particulate micro-structural DNS region, and vice versa. One
of the challenges with this conversion is that we do not know the material micro-structure
to make up the DNS region, nor its material parameters. We can use probability density
functions (PDFs) to sample approximate grain size, shape, percentage of matrix versus grain
material, inter-/intra-granular constitutive parameters, and grain-matrix interface de-bond
strength, for instance. The sampling of PDFs will provide an initial guess for the DNS
micro-structural geometry and material parameters. To ensure smooth conversion in terms
of average stress, strain, and energy, we can calibrate inversely the material parameters (using
the PDF sampling as an initial guess, and the DNS geometry fixed) through a micromorphic
homogenization procedure.

particulate DNS DE-FE

micromorphic continuum FE

convert down

(this is probabilistic)

particulate DNS DE-FE

micromorphic continuum FE

convert up

(this is deterministic)

Figure 5. Adaptivity: conversion from micromorphic continuum FE to particulate DNS material
model representation, and vice versa. The micromorphic continuum FE region could be the blue-
dashed box at the bottom-center of the illustration in Fig.1 to be converted to a particulate DNS
region for adaptive high-fidelity material modeling as the projectile penetrates the target. Note that
since we do not know the exact particulate DNS configuration and material properties when con-
verting from continuum FE to DNS in a region of potential fracture nucleation and fragmentation,
this process is probabilistic, and thus PDFs will be used for the conversion.

We ended up not having time to implement these conversions illustrated in Fig.5.
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5 Future Research

Future research entails the following: (1) extend the micromorphic 3D FE implementation
to explicit dynamics in Tahoe; (2) implement the overlap procedures presented in Sect.3;
and (3) test the adaptivity concepts presented in Sect.4.

Overall, the full 3D finite strain micromorphic coupled FE implementation and Drucker-
Prager model formulation and implementation took longer than expected, but now it is
nearly completed for the quasi-static case. The overlap coupling in 3D will continue after
this project, to be supported by another project and to include the multiphase (solid, liquid,
gas) nature of geologic and particulate materials. The adaptivity of our multiscale modeling
approach will be investigated as part of future work, and it is still an important problem to
investigate.
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